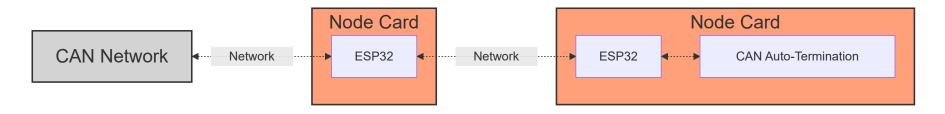
Node Card Assembly Guide

Introduction

See the <u>How to Use Assembly Guides</u> for detailed instructions.

In conjunction with the Node Bus Hub, the **LCC Fusion Node Card** provides an LCC compatible Node with ON/OFF control for up to 8 separate I/O devices. Typically, in an LCC Fusion Project LCC Fusion Node Cluster arrangement, there will be a Node Bus Hub, with one LCC Fusion Node Card, an optional I/O cards.

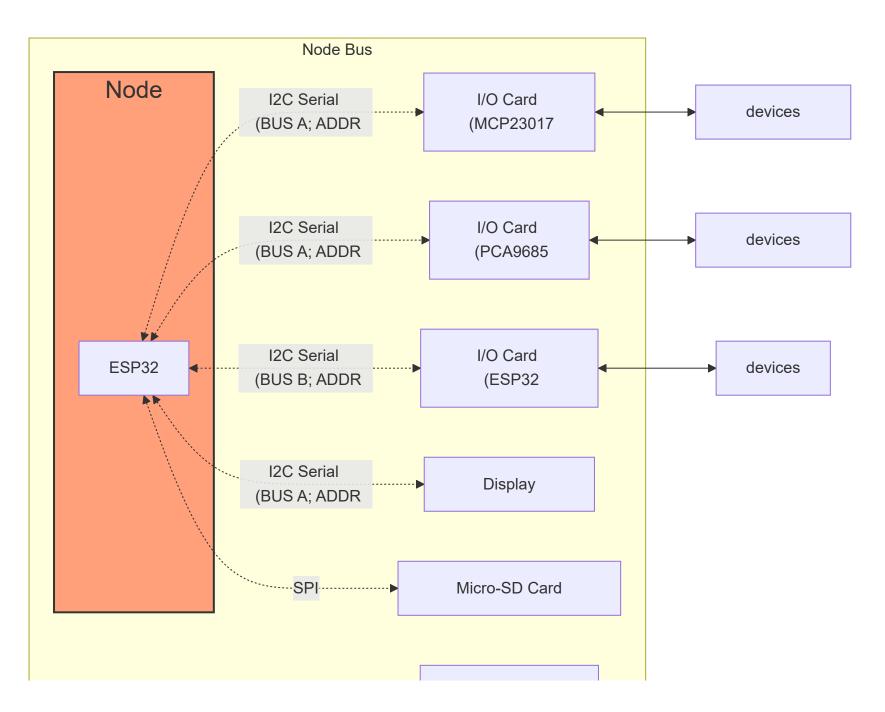

The **LCC Fusion Node Card** can be implemented with a number of **optional** features:

- 1. Power Supply options (see <u>Power Module</u> for more details):
 - 1. 12V+ input via a network cable (CAT5/6), USB-C socket, 5557 ATX connection, or a DC-005 barrel connection.
 - 2. 12V+ output via 5557 ATX connection for powering other LCC Fusion Node Cards.
 - 3. 5V+ output via USB-C for powering low voltage devices (e.g. RPI).
 - 4. 12V+ or input power selection for the LCC Fusion Node Bus Hub to control the high voltage for the I/O cards.
- 2. CAN serial connection via a network cable (CAT5/6) or connectors (JST XH or Spring terminal).
- 3. CANable adapter for Windows USB to CAN connection for JMRI integration.
- 4. CDI reset button (hold for 10 seconds to reset the CDI to factory setting)
- 5. Reset button to restart the Node.
- 6. LCC Fusion Node Bus Hub(RJ45) network cable connection to connect with a remote LCC Fusion Project Node Bus Hub

CAN Communications

The **LCC Fusion Node Card** connects to a CAN Network, enabling communication of **LCC Events**. It features two **RJ45 sockets** for easy **in/out** connections, allowing multiple Node Cards to be daisy-chained together. To simplify the network setup, the Node Card includes an **auto-termination circuit**, ensuring the correct 120 Ω termination is automatically applied to the last device in the chain, eliminating manual setup.

Below is a diagram illustrating the daisy-chaining of Node Cards via their RJ45 sockets with automatic CAN termination:

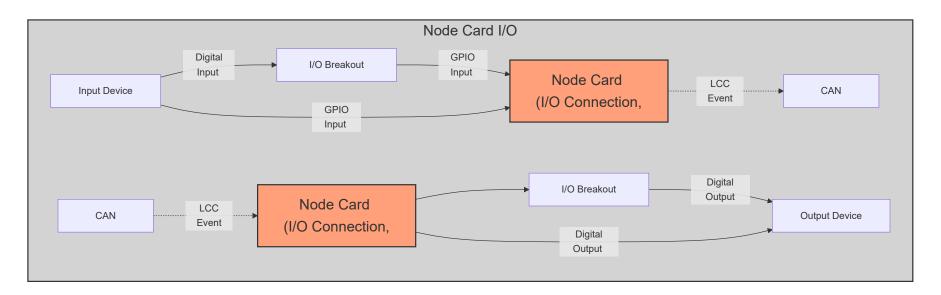


I2C Communication

The LCC Fusion Node Card supports I2C serial communication to interface with various I/O cards. Each device on the I2C bus is assigned a communication address and an address offset. The Node Card supports two I2C buses (Bus A and Bus B) with offsets ranging from 0 to 7.

Pullup resistors are used to "condition" the I2C lines (SDA and SCL), ensuring proper signal levels by pulling the lines to a high state when not actively driven. Conditioning of the I2C to maintain proper voltage levels is handled automatically.

Below is a diagram showing how I2C serial communication is used between the **Node Card** and multiple I/O cards:


	I2C	

I/O Connections

The LCC Fusion Node Card features an RJ45 socket for connecting up to 8 I/O devices, enabling direct interaction with a variety of peripherals. Supported I/O devices include:

- Touch pads
- LEDs
- Relays
- DC motors
- Buzzers
- Solenoids / Electromagnets
- Fans

Below is a diagram showing how a network cable is used to connect multiple I/O devices directly to the Node Card via its RJ45 socket:

Specifications

Specifications for the Power-CAN Card include:

When using multiple Node Cards or Quad-Node Cards, consider using ATX, terminal, or DC-005 barrel connector to provide 5V @ 3A to the Node Bus Hub.

Characteristic	Value
I/O: Max Input / Output Lines	8
Nodes: Max number of Nodes (assuming 100mA avg per Node ESP32)	30
Node Cards: Max number of Node Cards per Node Cluster	2 ¹
Input: Max supply voltage (limit of TVS Diode, SMBJ18V)	18V
Input : Max supply current via CAN Bus network cable (limited by network cable's 2 combined power wires)	1.2A

Characteristic	Value
Input : Max supply current via ATX 5557, Spring/Screw Terminal Connector, or DC-005 connector	3A
Input : Max supply current USB-C connector (without 12V regulator, connector limit)	2A
Output: Max 3V3 output current (LM1117-3V3 regulator limitation)	800mA
Output : Max supply current to output ATX 5557 or Spring/Screw Terminal connectors	3A
Output: Max 5V output current to Node Bus Hub	3A ^{2,3}
Output : Max 12V to the Node Bus Hub (L7812 regulator limitation)	1.5A ^{4,5}
Output: Max output current via USB-C	2A
Output : Max output voltage to ATX 5557 or Spring/Screw Terminal Connector	Input Voltage minus ~0.4 - 1.7V ⁶

1. Limit of Node Bus Hub (3A) within the Node Cluster (one or more Node Bus Hubs connected together via pin headers)

2. The LM2596-ADJ switching regulator has a maximum current rating of 5A, but the output is limited to 3A due to:

- PCB traces (54 mil width), Vias (0.6mm holes), Diodes (SS310), and
- 3A polyfuse (resettable).
- 3. The 5V switching regulator (LM2596-ADJ) operates with approximately a 10% efficiency loss, meaning the input current may exceed the output current by this margin.
- 4. Limit of 1.5A by 12V voltage regulator (L7812CV).
- 5. The 12V linear regulator (L7812) dissipates power as heat, resulting in an efficiency of around 85% (or ~15% efficiency loss), meaning the input current may exceed the output current by this margin.
- 6. Voltage drop is caused by reverse voltage protection (two SS310 diodes in series)

Below is an updated version of your Node Card documentation with an additional Indicators & Additional Features section covering the requested items.

How It Works

The **Node Card** supports both **power distribution** and **CAN network connectivity** across LCC Fusion devices. It connects to the **Node Bus Hub** and enables stable power and reliable communication between multiple Node Cards and I/O modules. Key protections against network fluctuations and reverse voltage are built in; see <u>Protection</u> for more.

CAN Network

The Node Card includes connections to the CAN Network for communications with other LCC protocol–enabled devices. Both network cable or 2/3-wire connections are supported.

The 2/3-wire connection could be use to connect with other LCC CAN enabled devices or to a (isolated) CANable Module connected to a computer for use with JMRI.

Correct termination of the CAN network is essential for reliable data transmission. To meet this, the **Node Card** and **Quad-Node Card** support auto-termination by detecting low voltage on the CAN network and applying a 120 Ω pullup resistor as needed.

Power Supplied to Local and Remote Node Bus Hubs

The Node Card provides regulated power to both local and remove Node Bus Hubs, with various connection and regulation options (see <u>Protection</u> and <u>Connections</u> for more details):

Remote Node Bus Hub: In addition to using the Node Card's Node Bus (edge) connection to a Node Bus Hub, you can also link the Node Card to a separate (remote) Node Bus Hub for extended network coverage using a network cable.

1. The **OUTPUT POWER** selector allows users to set the power output to **12V** via a linear regulator or to bypass it, using the input supply voltage for >12V needs.

- 2. When set to **12V**, the **L7812CV regulator** converts the supply voltage to 12V for use by both the Node Card and the Node Bus Hub.
- 3. A **LM2596-ADJ** switching regulator provides a steady **5V** supply for the Node Bus Hub.
- 4. A LM1117-3V3 linear regulator supplies 3.3V to the Hub, meeting the lower voltage requirements of certain modules.
- 5. Overcurrent protection is provided by two resettable polyfuses rated at 1.5A and 3A.
- 6. **Reverse polarity protection** is included via a diode across all input lines.

- 7. **Reverse current protection** is included via diodes on each output line.
- 8. **Noise filtering** is implemented with capacitors on both input and output lines to stabilize and clean the power signal.

Multiple Power Inputs/Outputs are supported via voltage regulators:

- **5V USB-C** (input or output)
- 12V output
- **Power input** via CAN bus network cable, ATX connection, or USB-C cable. Input power overload is protected using both slow and fast-blow fuses. A fuse holder allows the replacement of fast-blow fuse, which can also be bypassed using a Jump Cap.
- Battery Backup: An optional Battery Card can provide uninterrupted power, letting the Node Card continue operation if the main supply is lost.

This modular design also supports adding multiple Node Cards to a single Node Bus Hub to expand both power capacity and CAN connectivity, enabling flexible scaling for complex automation configurations.

Indicators & Additional Features

- **Power Indicators:** Onboard LEDs for **3.3V**, **5V**, and **12V** rails let you quickly verify that each voltage is active and within spec. A **blown fuse indicator** circuit also provides a visual alert if a the fast-blow fuse trips.
- Alert Buzzer & LED: Firmware can drive a buzzer and an additional LED to signal warnings or errors. The number of buzzes or LED blinks can be used as a diagnostic code for troubleshooting.
- **CDI Reset & Node Reboot:** The Node Card firmware supports the use of the Node Card's tactile buttons for triggering a CDI parameter reset or rebooting connected devices, ensuring you can remotely recover or reconfigure nodes if needed.
- I/O Devices: the ESP32 supports connecting analog, digital, touch, and PWM devices such ase sensors, actuators, or other I/O modules for local or distributed automation tasks.

Connections

Component Designator	Connector Label	Connector Type	Connection Number	Function	Description
	NODE BUS	Card Edge	1-12	Power, Communications	Connection to Node Bus Hub
J1	PWR IN	USB-C ¹	V+, GND	Power In	Connection from Power Supply (14- 18V, 0.5-3A)
J2	PWR IN	ATX 5557 RA ²	V+, GND	Power In	Connection from Power Supply (14- 18V, 0.5-3A)
J3	PWR IN	DC-005 ¹	V+, GND	Power In	Connection from Power Supply (14- 18V, 0.5-3A)
J4	PWR OUT	ATX 5557 RA	V+, GND	Power In	Connection to next Power-CAN Card, or Node Card (14-18V, 0.5-3A)
J5, J6	CAN BUS	RJ45 Socket	1-8; CAN-H, CAN-L, GND, undef, undef, GND, GND, V+	Power & CAN In/Out	Connection to/from other LCC Nodes. Pin 1 pad is square (left side, front row).
J7	1/0	RJ45 Socket	1-8	I/O (Digital, ADC, Touch, PWM)	Connection to input / output devices, or LCC Fusion breakout boards

Component Designator	Connector Label	Connector Type	Connection Number	Function	Description
J8	NODE BUS	RJ45 Socket ³	1-8; 3V3, 5V, 12V, GND, SDA0, SCL0, SCL1, SDA1	LCC Fusion Node Bus connection	Connection to LCC Fusion Node Bus Hub
J9	5V OUT	USB-C	5V, GND	Power Out	Connection to 5V devices (e.g. RPI)
J10	SPI / MICRO-SD MODULE	6-Pin Header	SPI (3V3, CS, MOSI, CLK, MISO, GND)	SD Card Reader	Used for local storage
J11	CAN I/O ^{4, 5}	3-Pin Header	CAN (CAN-H, CAN-L)	CANable Device/Adapter, CAN Network	Used to connect to the CAN Network
J12	BATT IN	2P JST XH, screw/spring terminal	12V, GND	Battery Card	Connection to LCC Fusion Battery Card for power backup
J13	I2C Display	4-Pin Header	GND, 3V3, SCL, SDA	Display Monitor	Connection to display messages on monitor

1. Recommend a laptop power supply with a USB-C and DC-005 connectors with typically provide 18-20V and >3A (>65W) for less than \$20 on Amazon.

2. Recommend using train layout accessory bus which is typically >12V.

- 3. Typically used to connected to a remote Node Bus Hub (board) as an alternative to using the **NODE BUS** edge connection to directly connect to a local **Node Bus Hub**. Pin 1 pad is square (left side, front row).
- 4. Provides an alternative method of connect to the **CAN Network**. A **CANable** adapters attach to computers via USB.
- 5. This connection does **NOT** provide a **galvanic isolation** link to the **CAN Network** for a electrical isolation between the **CAN Network** and **LCC Fusion** devices. For protection, insure that the **CANable Adapter** provides the required isolation.

Protection

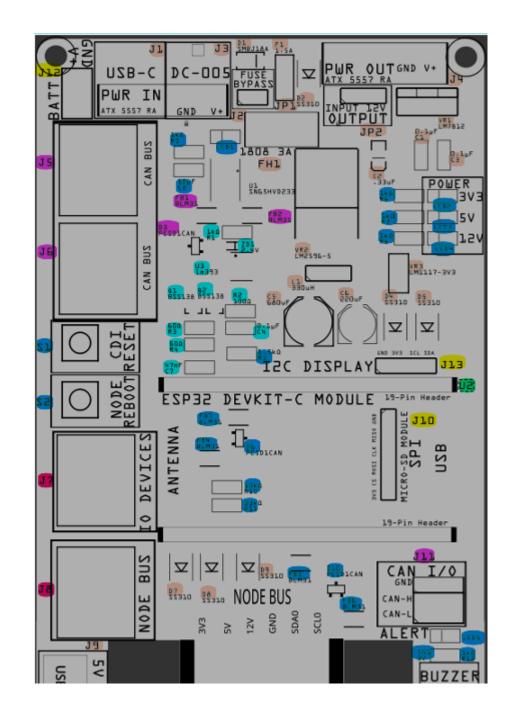
The LCC Fusion Node Car d is equipped with several protection components to ensure reliable operation and safeguard against electrical faults. Below is an overview of each protection element integrated into the LCC Fusion Node Card and its role:

Here's the updated row for low voltage detection, noting the minute-based alerts triggered until a reboot:

í.____

Protected Component	Protection Component	Function	Specifications	Location
Entire Board (Relays, Devices, Voltage Regulator)	<u>Crowbar Diode,</u> <u>Resettable Fuse</u>	Crowbar Protection protects against reverse polarity by short-circuiting the power supply when connected backward, blowing the fuse to protect the circuit	Diode becomes forward- biased if reverse polarity occurs	Across the power supply input (ACC V+ to ACC GND) C V+ to ACC GND)
Entire Board (ESP32, Devices)	Low Voltage Detection Circuit	Monitors 3.3V rail for voltage drops below 3.0V, triggering an alert message and buzzer every minute until reboot to prevent brownout conditions that may cause instability	Voltage threshold set to 3.0V	ADC pin connected to the 3.3V output from onboard regulator
Entire Power-CAN Card	Fast Blow Fuse	Protects from current overflow	Hold Current: 3A	In series with the incoming Vcc line

Protected Component	Protection Component	Function	Specifications	Location
Entire Power-CAN Card	Polyfuses	Protects from sustained overcurrent conditions by increasing resistance when the 3V3 or 5V current exceeds 1.5A. Resets once the fault condition is cleared.	Hold Current: 1.5A	In series with the 5V, 3V3 output lines
Entire Power-CAN Card	TVS Diode SMBJ18A	Protects from high-voltage transients by clamping voltage spikes, pthem from reaching sensitive components.	Stand-off Voltage: 18V Clamping Voltage: 29.2V	Across the incoming Vcc and GND lines
CAN Bus	Automatic Termination	Provides proper termination to prevent signal reflections on the CAN bus.	Value: 2x 60 Ωs in series (120 Ωs)	Across CANH and CANL lines, automatically applied based on CAN network voltage while using a low-pass filter to measure peak voltage.
CAN Bus	ESD Protection Diode PESD1CAN	Protects the CAN bus lines from electrostatic discharge and voltage spikes.	Reverse Stand-off Voltage (Vr): 24V Clamping Voltage (Vc): 40V	Across CANH to GND and CANL to GND
I2C Bus (each set)	ESD Protection Diode PESD1CAN	Protects the CAN bus lines from electrostatic discharge and voltage spikes.	Reverse Stand-off Voltage (Vr): 24V Clamping Voltage (Vc): 40V	Across CANH to GND and CANL to GND


Protected Component	Protection Component	Function	Specifications	Location
CAN Bus	BLM31PG121SN1L Ferrite Beads	CAN Network Bus Data Line Noise Suppression Ferrite Bead		In series with the CAN network lines
l2C Bus (each set)	BLM31PG121SN1L Ferrite Beads	CAN Network Bus Data Line Noise Suppression Ferrite Bead		In series with the I2C network lines
ESP32 Vcc	Decoupling Capacitor	Filters out high-frequency noise and transient voltage spikes from the power supply, ensuring stable voltage for the ESP32.	Value: 0.1 μF, 10uF ceramic	Integrated into DevKit-C Board
LM2596-ADJ Regulator	Output Capacitor	Filters out high-frequency noise and transient voltage spikes from the output, ensuring stable 5V regulation.	Value: 680 µF electrolytic	Across the output (5V) and GND
L7812CV Regulator	Output Capacitor	Filters out high-frequency noise and transient voltage spikes from the output, ensuring stable 12V regulation.	Value: 10 µF ceramic	Across the output (12V) and GND
Ground Bus	48mil Ground Bus	Provides a low-resistance path for all protection components, ensuring effective grounding and noise suppression.	Width: 48 mil	Used by all protection components

Summary

These protection components work together to safeguard the LCC Fusion Node Card from various electrical faults. The CAN termination resistor ensures proper signal integrity on the CAN bus, while the ESD protection diodes protect the CAN bus and I2C lines from voltage spikes and electrostatic discharge. The decoupling capacitor filters out noise and transient voltage spikes, ensuring stable power for the ESP32. The ferrite bead suppresses high-frequency noise on the I2C lines. The input Vcc is protected by the Power Module, which includes a polyfuse and TVS diode for overcurrent and overvoltage protection. Together, these components ensure the LCC Fusion Node Card operates reliably in a potentially harsh electrical environment.

Assembly-Configuration Options

The Node Card supports multiple assembly configurations to fit various use cases.

Node Card Assembly Guide | LCC Fusion Project

The **PCB diagram** shown above highlights different components based on their associated configuration. Each **color-coded component** corresponds to a specific configuration, which is further detailed in the table below.

To use this reference effectively:

- Match the Colors: Each assembly option in the table has a matching color in the PCB diagram. This helps identify which components are needed for a specific configuration.
- Locate Components Quickly: The highlighted component designators (e.g., D5, J1, JP2) on the PCB indicate where each part is placed.
- Identify Required vs. Optional Parts: The table differentiates between required components (essential for functionality) and optional components (enhancements or variations).
- Cross-Reference for Clarity: If you're unsure about a part's placement, use the designator labels on the PCB along with the descriptions in the table.

This approach ensures a **clear**, **visual guide** for assembling the Node Card based on your specific needs.

Configuration	Required/Optional	Description	Required Components	Optional Components
ESP32 & I2C Support	Required	Provide ESP32 DevKit-C Module Support for Node	 • ESP32 DevKit-C Headers (U1) • I2C Noise Filtering: Ferrite Beads FB3, FB4, FB5, FB6 	 I2C Bus Protection: Diode D6, D10 (for ESD protection on the I2C data bus) Reboot Button (S1) CDI Reset Button (S2)
CAN Termination Support	Required	I2C Low Voltage Dection and Correction	 Voltage Comparator (U3, ZD1, R1, R2) 120Ω Switching Circuit R3, R4, C7, Q1, Q2) 	None

Configuration	Required/Optional	Description	Required Components	Optional Components
Power-Input	Required	Provides power input connectors with high- voltage transient protection and input filtering.	 TVS Protection: diode D1 Reverse-polarity Protection: diode D2 Reverse Current Protection diodes D4, D5, D8 Overcurrent Protection: Slow-burn fuse F1 3A Fuse Holder: FH1 with 3A fuse AND/OR bypass selectable via header JP2 	 USB-C Power In Socket (J1) Wired Power In Connector J2 DC-005 Power In Connector (J3)
3.3V Output	Required	Supplies regulated 3.3V to the Node Bus.	 • 3.3V Regulated Output (VR3) • Reverse Current Protection: Diode D7 	None
5V Output	Required	Supplies regulated 5V to the Node Bus with proper filtering and protection.	 5V Regulated Output: Buck regulator VR2 accompanied by input filter capacitors C1 (680 μF). C2 (220 μF), C3 (0.1 μF), C4 (0.33 μF), and C9 (1nF), inductor L1, voltage divider resistors R13 (3.3KΩ) and R14 (1KΩ) Reverse/Output Protection: Diode D8 	• 5V USB-C Output Connector (J9)

Configuration	Required/Optional	Description	Required Components	Optional Components
12V Output	Optional	Provides regulated 12V (or higher) for powering external devices and the LCC Fusion Node Bus Hub.	 12V Regulated Output: Voltage regulator VR1 Reverse/Output Protection: Schottky diodes D4, D5, D9 Power Selection 3-Pin Header JP2 with Jumper cap SH1 (set to INPUT when NOT using the 12V regulator) 	• 12V Output Connectors: J4 (for 12V @ 3A output)
CAT-Wired CAN BUS Option	Optional	Enables wired CAN Bus connectivity over CAT network cable, supporting data exchange with other LCC Fusion Nodes.	 Reverse Polarity Protection: Diode D10 (protects input power from CAN Bus connectors) CAN Bus Noise Suppression: Ferrite beads FB1 and FB2 	 CAN Bus Connections: RJ45 connectors J5 and/or J6 ESD Protection: Diode D3
Indicators and Controls Support Option	Optional	Setup for Power Indicators and Firmware Controls	 Power Indicators (LED2, LED3, LED4, R6, R7, R8) Voltage Divider for 12V Detection (R10, R11) 	 Blown Fuse Indicator (LED1, R9, C8) Buzzer (SG1) ALERT Indicator (LED5,R12)
Battery Backup Support Option	Optional	Enables battery backup for increased system availability.	• Battery Connector: J12	None
	Optional	Setup for connecting Micro SD-Card Reader (use is TBD)	• SPI Connector (J10)	None

Configuration	Required/Optional	Description	Required Components	Optional Components
Display Mointor Option	Optional	Setup for connecting an I2C enabled display monitor	• I2C Connector (J13)	None
Remote Node Bus Hub Support Option	Optional	Setup for connecting to a remote Node Bus Hub	• Network Cable Connection to remote Node Bus Hub (J8)	None
l/O Device Support Option	Optional	Setup for supporting I/O Devices (e.g., LEDs, buttons) through network cable.	• I/O Device Connector (J7)	None

Components List

PCB for the LCC Fusion Node Card can be ordered from any PCB fabricator using these Gerber Files.

PCB Components - listing of components used for PCB assembly

PCB Parts - listing of parts used for PCB assembly

Below is a list of the PCB components used for this card (see diagram on below for reference):

Here's the updated table with the count, type, and package columns added:

Component Identifier	Count	Туре	Value	Package	Required?	Purpose
Capacitors						
C1, C3	2	Ceramic Capacitor	0.1uF	1206 SMD	Required	IC protection

Component Identifier	Count	Туре	Value	Package	Required?	Purpose
C2	1	Tantalum Capacitor	0.33uF	3216 SMD	Required	IC protection
C4	1	Ceramic Capacitor	0.1uF	1206 SMD	Required	Filters high- frequency noise from CAN signals, smoothing voltage for the comparator
С5	1	Polymer Capacitor	680uF, 10V	8x12mm, PTH	Required	Used by 5V voltage regulator for input filtering
C6	1	Polymer Capacitor	220µF, 10V	6.3x5.8mm , SMD	Required	Used by 5V voltage regulator for input filtering
С7	1	Ceramic Capacitor	47uF	1206 SMD	Required	CAN termination circuit
C8	1	Ceramic Capacitor	10uF	1206 SMD	Required	Used by blow fuse circuit to cause slow LED fade in/out
С9	1	Capacitor- Ceramic	1nF	1206 SMD	Required	Smooths the LM2596S-ADJ output voltage.
Diodes						

Component Identifier	Count	Туре	Value	Package	Required?	Purpose
D1	1	TVS Diode	SMBJ18A	SMB SMD	Optional	Protects from high-voltage transients (>29V)
D2, D4, D5, D7, D8, D9	6	Schottky Diode	SS310	SMA	Required	Reverse polarity and current protection
D3, D6, D10	3	ESD Diode	PESD1CAN	SOT-23 SMD	Optional	I2C data bus ESD protection
ZD1	1	Zener Diode	2.4V	BZT52	Required	2.4V reference voltage
Fuses & Protection						
FH1	1	Fuse Holder	1808 with 3A	SMD	Required (unless bypassed via JP1)	Protects from sustained overcurrent conditions
F1	1	PTC Polymer Fuse	JK30, 1.5A, 16V (or more)	5.1mm pitch, PTH	Required	Overcurrent protection
Filters & Noise Suppression						
FB1, FB2	2	Ferrite Bead	BLM31PG121SN1 L	1206 SMD	Required	CAN Network Bus Data Line Noise Suppression Ferrite Bead

Component Identifier	Count	Туре	Value	Package	Required?	Purpose
FB3, FB4	2	Ferrite Bead	BLM31PG121SN1 L	1206 SMD	Required	I2C Data Line Noise Suppression Ferrite Bead
Connectors						
J1	1	USB-C Socket	4-Pin	SMD	Optional	Power input connector to power the LCC Fusion Node Card when power is not being supplied via the CAN Network Bus network cable
J2	1	Connector	5557 ATX RA	РТН	Optional	Power input connector to power the LCC Fusion Node Card when power is not being supplied via the CAN Network Bus network cable

Component Identifier	Count	Туре	Value	Package	Required?	Purpose
J3	1	Power Jack	DC-005	PTH	Optional	Power input connector to power the LCC Fusion Node Card when power is not being supplied via the CAN Network Bus network cable
J4	1	Connector	5557 ATX RA	PTH	Optional	Power input connector to power the LCC Fusion Node Card when power is not being supplied via the CAN Network Bus network cable
J5-J8	4	RJ45 Socket	8P8C	РТН	Optional	CAN Bus and I/O networking
ور	1	USB-C Socket	4-Pin	SMD	Optional	Power output connector for external devices
J10	1	Header	6-Pin Male	РТН	Optional	Mounting for Micro-SD Reader Module

Component Identifier	Count	Туре	Value	Package	Required?	Purpose
J11-J12	2	Female Headers	19-Pin	PTH	Required	Mounting for ESP32 DevKit-C module
J13	1	Header	4-Pin	РТН	Optional	Mounting for I2C display monitor as a serial monitor
Inductors & Resistors						
L1	1	Inductor	33uH	8x10mm, PTH	Required	Used for 5V voltage regulation
R1	1	Resistor	1k Ω	1206 SMD	Required	Current limiting for reference voltage
R2	1	Resistor	100 Ω	1206 SMD	Required	Low Pass Filter for low signal detection
R3, R4	2	Resistor	60 Ω	1206 SMD	Required	CAN termination circuit
R5	1	Resistor	1.5k Ω	1206 SMD	Optional	Part of CDI Factory Reset circuit

Component Identifier	Count	Туре	Value	Package	Required?	Purpose
R6-R9, R12	5	Resistor	1k Ω	1206 SMD	Optional	Current limiting for power output and alerts LEDs
R13	1	Resistor	3.3k Ω	1206 SMD	Required	Regulator voltage divider (R2)
R14	1	Resistor	1k Ω	1206 SMD	Required	Regulator voltage divider (R1)
Switches & Indicators						
LED1-LED5	5	LEDs	Red/Green	1206 SMD	Optional	Status and alert indicators
S1, S2	2	Tact Button Switch	N/A	SMD	Optional	Factory reset or reboot buttons
SG1	1	Buzzer	3V	Piezo Active Buzzer, 9650-5V, SMD	Optional	Buzzer for firmware generated error/warning alerts
ICs						
U1	1	CAN Transceiver	SN65HVD233DR	SMD	Required	CAN Communications

Component Identifier	Count	Туре	Value	Package	Required?	Purpose
U2	1	MCU (Processor)	ESP32 DevKitC-V4 Module /w ESP32- WROOM-32D 4MB	PTH, 38-Pin wide	Required	Main processor for Node Card
U3	1	Voltage Comparator	LM393 or LM2903N	SO-8, SMD	Required	Detects low voltage in I2C lines
Voltage Regulators						
VR1	1	Voltage Regulator	L7812CV	TO-220 PTH	Optional	12V regulator for Node Bus Hub
VR2	1	Voltage Regulator	LM2596S-ADJ	SMD	Required	5V regulator for ESP32 & Node Bus Hub
VR3	1	Voltage Regulator	LM1117-3V3 IC	SMD	Required	3.3V regulator for Node Bus Hub

Tools Required

List of recommended tools.

Safety Precautions

• See <u>Safety Precautions</u>.

Assembly Instructions

Below are the high level steps for assembly of the LCC Fusion Node Card:

- 1. Clean PCB with alcohol to remove residue. See <u>Cleaning_PCB</u> for details.
- 2. When using a PCB stencil to apply the paste, align the stencil over the PCB using the 2 Tooling Holes located at the top and bottom of the card. There are very small holes with no labels or markings. Use a thick straight pin or wire for the alignment, pushing down into a soft foam surface to hold the pin/wire in place.

See also: Soldering Tips

tritzing

Component Identifier	Value	Required?	Orientation
C1, C3, C4	0.1uF	Required	None
C2	0.33uF Tantalum	Required	Cathode end has a brown line and positioned towards PCB bottom edge
С5	680uF, 25V	Required	Anode positioned toward PCB top edge
C6	220uF, 25V	Required	Anode positioned toward PCB top edge
C7	47uF	Required	None
C8	10uF	Optional	None
С9	1nF	Required	None
D1	SMBJ18A	Optional	Cathode end has a white line and positioned towards PCB right edge
D2, D4, D5	Diode	Optional	Cathode end has a white line and positioned towards PCB bottom edge
D3, D6, D10	PESD1CAN	Optional	Fits only one way
D7, D8, D9	Diode	Required	Cathode end has a white line and positioned towards PCB bottom edge
FH1	Fuse Holder /w 3A	Required	None

Component Identifier	Value	Required?	Orientation
F1	1.5A Fuse	Required	None
FB1 - FB6	BLM31PG121SN1L	Required	None
J1	4-Pin	Optional	None
J2, J4	5557 ATX RA	Optional	GND pin is marked on board with square pad
J3	DC-005	Optional	Fits only one way
J5, J6	8P8C	Required	Fits only one way
Ј7, Ј8	8P8C	Optional	Fits only one way
J9	4-Pin	Optional	None
J10	6-Pin male/female	Optional	None
J11	2-P Connector	Optional	None
J12	JST XH Socket	Optional	Position GND (black wire) to PCB right side
J13	4-Pin	Optional	None
JP1	2-Pin male header	Optional	None
JP2	3-Pin male header	Required	None
L1	33uH	Required	None

Component Identifier	Value	Required?	Orientation
LED1	RED LED	Optional	Reference back of LED, position cathode towards PCB top
LED2 - LED5	GRN LED	Optional	Reference back of LED, position cathode towards PCB top
R1	1k Ω	Required	None
R2	100 Ω	Required	None
R3, R4	60 Ω	Required	None
R5	1.5k Ω	Optional	None
R6 - R9, R12	1k Ω	Optional	None
R10	10k Ω	Required	None
R11	33k Ω	Required	None
R13	3.3k Ω Resistor (1206 SMD)	Required	None
R14	1k Ω Resistor (1206 SMD)	Required	None

Component Identifier	Value	Required?	Orientation
S1, S2	N/A	Optional	None
SG1	5V	Optional	None
U1	SN65HVD233DR	Required	Package has small dimple in corner (pin 1) which is position to PCB top right edges
U2	ESP32 DevKitC-V4	Required	Position ESP32 development board's USB connector to PCB right edge
VR1	L7812CV	Optional	Heat sink towards top of board
VR2	LM2596-ADJ	Required	Fits only one way
VR3	LM1117-3V3	Required	Fits only one way
J11, J12	19-Pin	Required	None
ZD1	2.4V	Required	Cathode end has a white line and positioned towards PCB right edge

Testing and Verification

Card Configuration

- 1. If the LCC Fusion Node Card is at the end of the CAN Bus Network, set the CAN TERM selection to **TERMINATION** (single jumper caps positioned across the top 2 pins).
- 2. If the LCC Fusion Node Card is not at the end of the CAN Bus Network, set the CAN TERM selection to No-Term (2 jumper caps each positioned vertically on the left and right set of pins).

Visual Inspection

- 1. Initial Check: Examine the board for any obvious issues like missing components, solder bridges, or components that are misaligned or not fully seated.
- 2. **Solder Joint Inspection**: Use a magnifying glass or a microscope to inspect solder joints. Look for cold solder joints, insufficient or excessive solder, or any shorts between pads.
- 3. **Component Orientation**: the IC's are correctly oriented according to the PCB silkscreen or schematic.

Connectivity Testing

1. **Continuity Check**: Use a multimeter in continuity mode to check for shorts between power rails and ground, and to ensure there are no open circuits in critical connections.

Power Input/Output Tests

Power input and output testing ensures that voltage levels are accurate, components are properly placed, and connections remain continuous across the Node Card's power circuits. These tests verify the integrity of each power rail, helping identify any potential issues before installing sensitive components.

Perform each step below in sequence. When checking voltage (**V**), set a multimeter to **DC voltage** mode and measure across **V**+ and **GND** connections. For continuity checks (** Ω), switch the multimeter to resistance** mode and measure both ends of the connection to confirm a low-resistance path.

NOTE: Do not install the ESP32 until all voltages are verified to avoid potential damage.

NOTE: If the expected results are not met, consider the following actions:

1. Re-verify the orientation of components listed in Pre-Reqs.

- 2. Check soldering for poor connections or solder bridges between SMD legs and PTH pins.
- 3. Temporarily remove optional components, such as protection diodes, to isolate the issue.
- 4. Replace the component with a known good equivalent if the issue persists.

Test Description	Pre-Reqs	Test Points	Expected Result
Verify GND Connection	None	BATT GND connection and NODE BUS GND pads	Ω0

Test Description	Pre-Reqs	Test Points	Expected Result
Verify Blown Fuse Indicator	 Attach >14V power supply with circuit protection to PWR IN ATX 5557 connector (J1, pins 1 and 2) Check for Hot Components: Feel for overheating components 	None	Red LED1 fades in/out indicating blown (or no fuse in FH1) and FUSE BYPASS is not selected
Verify No Short Circuits	 FUSE BYPASS (JP1) set to bypass the fuse using a Jumper Cap OUTPUT (JP2) selection set to INPUT using a Jumper Cap Verify orientation of protection diodes D1 and D9 	 the fuse using a Jumper Cap 2. OUTPUT (JP2) selection set to INPUT using a Jumper Cap 3. Verify orientation of protection 	
Verify POWER Indicators	None	None	POWER indicators 3v3 , 5v , 12v (Green LEDs) are all on
Verify PWR IN Power Input Connections	 PWR IN USB-C socket (J2) using V+ (pins 2, 3) and GND (pins 1,4) PWR IN DC-005 connector (J3) using V+/GND as labeled 	PWR OUT (J4), across ATX 5557 V+ (pin 1) and GND (pin 2) NODE BUS pads, across 12V and GND pads	Match input voltage ¹³
Verify CAN BUS Power Input Connections	Attach >14V power supply to each of the CAN BUS RJ45 sockets (J5/J6): V+ (pins 3,4) and GND (pins 7,8)	NODE BUS pads, across 12V and GND pads	Match input voltage ¹
Verify BATT Power Input Connection	Attach >14V power supply to BATT (JST XH, Screw/Spring Terminal, J12) pins 1,2	NODE BUS pads, across 12V and GND pads	Match input voltage ¹

Test Description	Pre-Reqs	Test Points	Expected Result
Verify 3A Fuse	1. Remove FUSE BYPASS selection 2. Install 1808 3A fuse in fuse holder (FH1) 3. Attach power supply to one of the power input connectors	Pwr out (J4), across ATX 5557 V+ (pin 1) and GND (pin 2)	Match input voltage ¹
Verify NODE BUS 12V Pad	 OUTPUT (JP2) selection set to using a jumper cap Verify the orientation of the voltage regulator (VR1) 	NODE BUS pads, across 12V and GND pads	~11.5V ¹
Verify NODE BUS 5V Pad	 Verify orientation of filter capacitors C5 and C6 Verify orientation of protection diode D10 	NODE BUS pads, across 5V and GND pads	~5V ²
Verify 5V OUT Connection	Verify the USB-C socket alignment and soldering	5v OUT USB-C (J9), across V+ (pins 2,3) and GND (pins 1,4)	~5V ²
Verify NODE BUS 3V3 Pad	Verify orientation of diode D8	NODE BUS pads, across 3V3 and GND pads	~3.3V ³
Verify CAN BUS Termination	n/a	CAN BUS (J5/J6) CAN-H (pin 1) and CAN-L (pin 2)	>120 Ω ⁴
Verify IO DEVICES Connection	n/a	IO DEVICES (J7) pins 1-8 and NODE BUS GND tab	OV

Footnotes:

1. 12V Pad Voltage Drop: The expected output voltage is slightly lower than the input voltage (~0.5V) due to SS310 protection diodes.

2. **5V Pad Voltage Drop**: The 5V output voltage may show a minor variance from exactly 5V due to protective diode voltage drops.

3. **3V3 Pad Voltage Drop**: The 3V3 pad voltage may show a minor variance from exactly 3.3V due to protective diode voltage drops.

4. **open circuit (>120 Ω)**: When only one CAN network device (e.g. LCC Node) is on the network, no CAN Network termination resistor is applied by the autotermination circuitry.

ESP32 Communications Testing

This section confirms the functionality of both **CAN Network** and **I2C Serial** communication components and connections on the Node Card. Before testing, ensure the ESP32 module is installed only after verifying the **5V** power supply is present.

Use a multimeter to check for expected voltage levels during each step, following the sequence outlined below. For each test:

- Voltage checks: Set the multimeter to DC voltage mode and measure across the designated test points.
- **Continuity checks** (if applicable): Use **resistance** mode to confirm a low-resistance path.

Note: During testing, monitor the **Red LED** on the DevKit-C Module to confirm ESP32 power status.

Test Description	Pre-Reqs	Test Points	Expected Result
Verify ESP32 Module	 Attach power supply to one of the power inputs Verify ~5V at ESP32 module (U2) across Vin and GND pins Install DevKit-C Module (U2) while verifying orientation (USB connection position towards PCB right edge. Recommend using 19- Pin female headers for easy removal of the ESP32 module. 	n/a	Red LED power indicator on the DevKit-C Module is On . (If not, verify orientation and check voltage at Vin.)
Verify CAN BUS Communication Connections	 Verify CAN transceiver (U1) orientation Verify Ferrite Bead (FB3) is soldered correctly Verify ESD Diodes (D6, D7) are soldered correctly 	 CAN BUS (J5/J6) pins, CAN-H (pin and GND (pin 3) CAN BUS (J5/J6) pins, CAN-L (pin and GND (pin 3) 	~2.25V - 2.5V (both lines similar during idle state)

Test Description	Pre-Reqs	Test Points	Expected Result
Verify CAN I/O Communications Connection	 Verify Ferrite Beads (FB5, FB6) are soldered correctly Verify ESD Diode (D7) is soldered correctly 	are soldered correctlyGND2. Verify ESD Diode (D7) is soldered2. CAN I/O (J11) pins, CAN-L and	
Verify NODE BUS I2C Communications	 Verify Ferrite Beads (FB3, FB4) are soldered correctly Verify ESD Diode (D6) is soldered correctly 	ered correctly2. NODE BUS tabs, SCL0 and GNDESD Diode (D6) is soldered3. NODE BUS tabs, SDA1 and GND	
Verify CAN BUS Termination	 Node Card is not connected to the CAN network Verify voltage comparator (U3) orientation Verify Zener Diode (ZD1) orientation Auto-termination components (U3,ZD1,Q1,Q2,R3,R4,C7) are soldered correctly 	Сам виз (J5/J6) pins, САМ-Н (pin 1) and CAN-L (pin 2)	120 Ω (when Node Card is the only device connected)
Verify NODE REBOOT Tactile Button	Press NODE REBOOT (S1) button once. When no button is installed, momentarily short pads 1 and 2 together	n/a	ESP32 power (RED) LED turns off and then on (indicating a reboot)

Node Card Auto Testing (Using Serial Monitor During Firmware Startup)

Test Description	Pre-Reqs	Expected Result
Verify Firmware Startup with Serial Monitor	 Upload the 'LCC Node Card' firmware to the ESP32. Attach power supply to any power input. 3. Insert DevKit-C Module (U2), ensuring the USB connection faces the right edge of the PCB. Attach ESP32 to computer using USB cable. Open serial console, set the port (e.g., COM3) and baud rate (115200). 	[I] LCC Node: Started message is displayed
Verify Voltage To ESP32	After completing starting of firmware with serial monitor	[W] Low Voltage from power supply to ESP32 message is NOT displayed
Verify 12V To NODE BUS HUB	After voltage test completion	[W] Low Voltage from power supply to 12V message is NOT displayed
Verify NODE BUS I2C Communications (BUS A, BUS B)	After voltage test completion	[I] I/O Card Communications is working message is displayed
Verify NODE BUS CAN Communications	After I2C communications test completion	[I] Successfully connected to CAN Network message is displayed
Verify I/O DEVICES Connectivity To Devices	After CAN communications test completion	[I] Node Card I/O device found on connection nn messages for each device connected to the I/O Devices connector

Node Card Testing (Using Serial Monitor Testing Program)

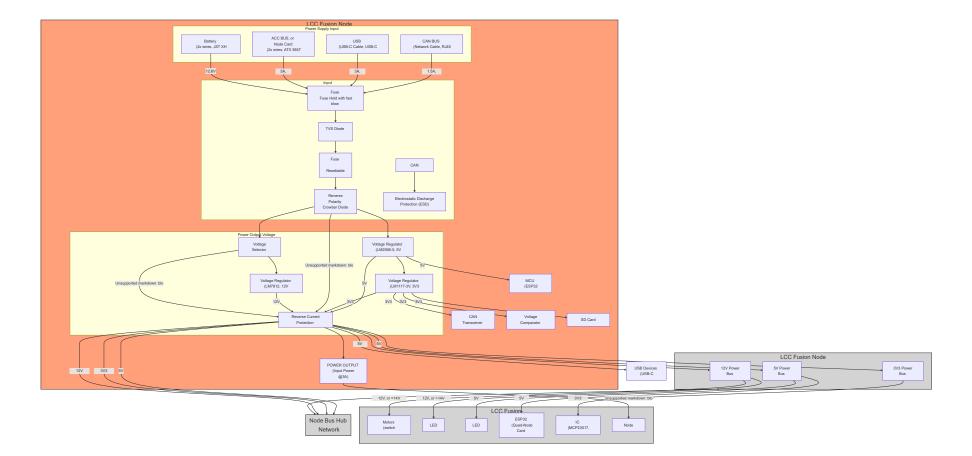
This table provides step-by-step instructions to verify the Node Card's communication interfaces and I/O DEVICES functionality using the serial monitor testing program. Follow each test in sequence, and check "Expected Result" to confirm each test's success.

Test Description	Pre-Reqs	Action	Expected Result
Verify Testing Firmware	 Upload the 'Testing' firmware to the ESP32. Attach power supply to any power input. Insert DevKit-C Module (U2), ensuring the USB connection faces the right edge of the PCB. Attach ESP32 to computer using USB cable. Open serial console, set the port (e.g., COM3) and baud rate (115200). 	Enter m in the serial console input and send.	Main Menu - LCC Fusion Project is displayed in the serial console.
Verify NODE BUS I2C Communications (BUS A and BUS B)	 From the main menu, select Node Management by entering 1. Choose Device Testing Management. Select Test Node Card Connectivity. 	 Connect NODE BUS tabs, SDA0 and SCL0 with a jumper wire. Enter c to start the test. Repeat by connecting a jumper wire to NODE BUS tabs, SDA1 and SCL1 and entering c to start the test again. 	Displays I2C Continuity Test Successful message.

Test Description	Pre-Reqs	Action	Expected Result	
Verify NODE BUS CAN Communications	After completing both I2C tests	 Connect NODE BUS CAN-H and CAN-L (PCB bottom) with a jumper wire. Enter c to start the test. 	Displays CAN Continuity Test Successful message.	
Verify I/O DEVICES Connectivity To Devices	After CAN test completion	 Attach a multimeter or LEDs to I/O DEVICES pins 1-8 and NODE BUS GND. Enter c to start test. Each pin will sequentially go HIGH (3.3V) for 0.5 sec, repeating until s is entered. 	Multimeter reads 3.3V or LEDs light up, one at a time.	

Troubleshooting

• See <u>I2C Trouble Shooting</u>.


References

- 1. ESP32 DevKitC Module 38Pin ESP32 DevKitC with ESP32-WROOM-32D
- 2. Node Card Firmware configuration:
 - 1. CAN bus @ 125kbs (per the NMRA LCC standard)
 - 2. SPI bus @ 4MHz
 - 3. NOTE: ESP32 PSRAM (SPIRAM) can not be used because pin conflicts with CAN bus (pin 5), I2C bus 1 (pin 18), and SPI (pins 19 and 23)
 - 4. Node Card ESP32 Pin Assignments

Node Card Function	GPIO Pin	Node Card Function	GPIO Pin
CAN TX	4	CAN RX	5

Node Card Function	GPIO Pin	Node Card Function	GPIO Pin
I2C SDA0 (BUS 0)	21	12C SCL0 (BUS 0)	22
I2C SDA1 (BUS 1)	18	I2C SCL1 (BUS 1)	25
SPI CS	17	SPI SCK/CLK	26
SPI MOSI	23	SPI MISO	19
NODE REBOOT	EN/PU	CDI RESET	36
LOW 12V VOLTAGE DETECTION	39	LOW 3V3 VOLTAGE DETECTION	34
IO Pins 1-4 (Digital, ADC, PWM)	2, 12, 15, 14	IO Pins 5-8 (Digital, ADC, PWM)	13, 27, 32, 33
IO Pins (Touch Pads)	T2, T5, T3, T6	IO Pins (Touch Pads)	Т4, Т7, Т9, Т8
Flash Pins (reserved)	6, 7, 8, 9, 10,11	UART0 (reserved)	1, 3
Active Buzzer	35	Not Used (Input/Output)	0

3. Flow of current:

